Multilevel Richardson–Romberg extrapolation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilevel Richardson-Romberg extrapolation

We propose and analyze a Multilevel Richardson-Romberg (ML2R) estimator which combines the higher order bias cancellation of the Multistep Richardson-Romberg method introduced in [Pag07] and the variance control resulting from the stratification introduced in the Multilevel Monte Carlo (MLMC) method (see [Gil08, Hei01]). Thus, in standard frameworks like discretization schemes of diffusion proc...

متن کامل

Implicit Extrapolation Methods for Multilevel Finite Element Computations

Extrapolation methods for the solution of partial diierentialequations are commonly based on the existence of error expansions for the approximate solution. Implicit extrapolation, in the contrast, is based on applying extrapolation indirectly, by using it on quantities like the residual. In the context of multigrid methods, a special technique of this type is known as-extrapolation. For nite e...

متن کامل

Visuomotor extrapolation

Accurate perception of moving objects would be useful; accurate visually guided action is crucial. Visual motion across the scene influences perceived object location and the trajectory of reaching movements to objects. In this commentary, I propose that the visual system assigns the position of any object based on the predominant motion present in the scene, and that this is used to guide reac...

متن کامل

Kernel extrapolation

We present a framework for efficient extrapolation of reduced rank approximations, graph kernels, and locally linear embeddings (LLE) to unseen data. We also present a principled method to combine many of these kernels and then extrapolate them. Central to our method is a theorem for matrix approximation, and an extension of the representer theorem to handle multiple joint regularization constr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bernoulli

سال: 2017

ISSN: 1350-7265

DOI: 10.3150/16-bej822